1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165
// Copyright 2018 Developers of the Rand project. // // Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or // https://www.apache.org/licenses/LICENSE-2.0> or the MIT license // <LICENSE-MIT or https://opensource.org/licenses/MIT>, at your // option. This file may not be copied, modified, or distributed // except according to those terms. //! Helper functions for implementing `RngCore` functions. //! //! For cross-platform reproducibility, these functions all use Little Endian: //! least-significant part first. For example, `next_u64_via_u32` takes `u32` //! values `x, y`, then outputs `(y << 32) | x`. To implement `next_u32` //! from `next_u64` in little-endian order, one should use `next_u64() as u32`. //! //! Byte-swapping (like the std `to_le` functions) is only needed to convert //! to/from byte sequences, and since its purpose is reproducibility, //! non-reproducible sources (e.g. `OsRng`) need not bother with it. use core::intrinsics::transmute; use core::ptr::copy_nonoverlapping; use core::slice; use core::cmp::min; use core::mem::size_of; use RngCore; /// Implement `next_u64` via `next_u32`, little-endian order. pub fn next_u64_via_u32<R: RngCore + ?Sized>(rng: &mut R) -> u64 { // Use LE; we explicitly generate one value before the next. let x = u64::from(rng.next_u32()); let y = u64::from(rng.next_u32()); (y << 32) | x } /// Implement `fill_bytes` via `next_u64` and `next_u32`, little-endian order. /// /// The fastest way to fill a slice is usually to work as long as possible with /// integers. That is why this method mostly uses `next_u64`, and only when /// there are 4 or less bytes remaining at the end of the slice it uses /// `next_u32` once. pub fn fill_bytes_via_next<R: RngCore + ?Sized>(rng: &mut R, dest: &mut [u8]) { let mut left = dest; while left.len() >= 8 { let (l, r) = {left}.split_at_mut(8); left = r; let chunk: [u8; 8] = unsafe { transmute(rng.next_u64().to_le()) }; l.copy_from_slice(&chunk); } let n = left.len(); if n > 4 { let chunk: [u8; 8] = unsafe { transmute(rng.next_u64().to_le()) }; left.copy_from_slice(&chunk[..n]); } else if n > 0 { let chunk: [u8; 4] = unsafe { transmute(rng.next_u32().to_le()) }; left.copy_from_slice(&chunk[..n]); } } macro_rules! impl_uint_from_fill { ($rng:expr, $ty:ty, $N:expr) => ({ debug_assert!($N == size_of::<$ty>()); let mut int: $ty = 0; unsafe { let ptr = &mut int as *mut $ty as *mut u8; let slice = slice::from_raw_parts_mut(ptr, $N); $rng.fill_bytes(slice); } int }); } macro_rules! fill_via_chunks { ($src:expr, $dst:expr, $ty:ty, $size:expr) => ({ let chunk_size_u8 = min($src.len() * $size, $dst.len()); let chunk_size = (chunk_size_u8 + $size - 1) / $size; if cfg!(target_endian="little") { unsafe { copy_nonoverlapping( $src.as_ptr() as *const u8, $dst.as_mut_ptr(), chunk_size_u8); } } else { for (&n, chunk) in $src.iter().zip($dst.chunks_mut($size)) { let tmp = n.to_le(); let src_ptr = &tmp as *const $ty as *const u8; unsafe { copy_nonoverlapping(src_ptr, chunk.as_mut_ptr(), chunk.len()); } } } (chunk_size, chunk_size_u8) }); } /// Implement `fill_bytes` by reading chunks from the output buffer of a block /// based RNG. /// /// The return values are `(consumed_u32, filled_u8)`. /// /// `filled_u8` is the number of filled bytes in `dest`, which may be less than /// the length of `dest`. /// `consumed_u32` is the number of words consumed from `src`, which is the same /// as `filled_u8 / 4` rounded up. /// /// # Example /// (from `IsaacRng`) /// /// ```ignore /// fn fill_bytes(&mut self, dest: &mut [u8]) { /// let mut read_len = 0; /// while read_len < dest.len() { /// if self.index >= self.rsl.len() { /// self.isaac(); /// } /// /// let (consumed_u32, filled_u8) = /// impls::fill_via_u32_chunks(&mut self.rsl[self.index..], /// &mut dest[read_len..]); /// /// self.index += consumed_u32; /// read_len += filled_u8; /// } /// } /// ``` pub fn fill_via_u32_chunks(src: &[u32], dest: &mut [u8]) -> (usize, usize) { fill_via_chunks!(src, dest, u32, 4) } /// Implement `fill_bytes` by reading chunks from the output buffer of a block /// based RNG. /// /// The return values are `(consumed_u64, filled_u8)`. /// `filled_u8` is the number of filled bytes in `dest`, which may be less than /// the length of `dest`. /// `consumed_u64` is the number of words consumed from `src`, which is the same /// as `filled_u8 / 8` rounded up. /// /// See `fill_via_u32_chunks` for an example. pub fn fill_via_u64_chunks(src: &[u64], dest: &mut [u8]) -> (usize, usize) { fill_via_chunks!(src, dest, u64, 8) } /// Implement `next_u32` via `fill_bytes`, little-endian order. pub fn next_u32_via_fill<R: RngCore + ?Sized>(rng: &mut R) -> u32 { impl_uint_from_fill!(rng, u32, 4) } /// Implement `next_u64` via `fill_bytes`, little-endian order. pub fn next_u64_via_fill<R: RngCore + ?Sized>(rng: &mut R) -> u64 { impl_uint_from_fill!(rng, u64, 8) } // TODO: implement tests for the above