1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856
// Copyright 2017 The Rust Project Developers. See the COPYRIGHT // file at the top-level directory of this distribution and at // https://rust-lang.org/COPYRIGHT. // // Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or // https://www.apache.org/licenses/LICENSE-2.0> or the MIT license // <LICENSE-MIT or https://opensource.org/licenses/MIT>, at your // option. This file may not be copied, modified, or distributed // except according to those terms. //! A distribution uniformly sampling numbers within a given range. //! //! [`Uniform`] is the standard distribution to sample uniformly from a range; //! e.g. `Uniform::new_inclusive(1, 6)` can sample integers from 1 to 6, like a //! standard die. [`Rng::gen_range`] supports any type supported by //! [`Uniform`]. //! //! This distribution is provided with support for several primitive types //! (all integer and floating-point types) as well as `std::time::Duration`, //! and supports extension to user-defined types via a type-specific *back-end* //! implementation. //! //! The types [`UniformInt`], [`UniformFloat`] and [`UniformDuration`] are the //! back-ends supporting sampling from primitive integer and floating-point //! ranges as well as from `std::time::Duration`; these types do not normally //! need to be used directly (unless implementing a derived back-end). //! //! # Example usage //! //! ``` //! use rand::{Rng, thread_rng}; //! use rand::distributions::Uniform; //! //! let mut rng = thread_rng(); //! let side = Uniform::new(-10.0, 10.0); //! //! // sample between 1 and 10 points //! for _ in 0..rng.gen_range(1, 11) { //! // sample a point from the square with sides -10 - 10 in two dimensions //! let (x, y) = (rng.sample(side), rng.sample(side)); //! println!("Point: {}, {}", x, y); //! } //! ``` //! //! # Extending `Uniform` to support a custom type //! //! To extend [`Uniform`] to support your own types, write a back-end which //! implements the [`UniformSampler`] trait, then implement the [`SampleUniform`] //! helper trait to "register" your back-end. See the `MyF32` example below. //! //! At a minimum, the back-end needs to store any parameters needed for sampling //! (e.g. the target range) and implement `new`, `new_inclusive` and `sample`. //! Those methods should include an assert to check the range is valid (i.e. //! `low < high`). The example below merely wraps another back-end. //! //! ``` //! use rand::prelude::*; //! use rand::distributions::uniform::{Uniform, SampleUniform, //! UniformSampler, UniformFloat}; //! //! struct MyF32(f32); //! //! #[derive(Clone, Copy, Debug)] //! struct UniformMyF32 { //! inner: UniformFloat<f32>, //! } //! //! impl UniformSampler for UniformMyF32 { //! type X = MyF32; //! fn new(low: Self::X, high: Self::X) -> Self { //! UniformMyF32 { //! inner: UniformFloat::<f32>::new(low.0, high.0), //! } //! } //! fn new_inclusive(low: Self::X, high: Self::X) -> Self { //! UniformSampler::new(low, high) //! } //! fn sample<R: Rng + ?Sized>(&self, rng: &mut R) -> Self::X { //! MyF32(self.inner.sample(rng)) //! } //! } //! //! impl SampleUniform for MyF32 { //! type Sampler = UniformMyF32; //! } //! //! let (low, high) = (MyF32(17.0f32), MyF32(22.0f32)); //! let uniform = Uniform::new(low, high); //! let x = uniform.sample(&mut thread_rng()); //! ``` //! //! [`Uniform`]: struct.Uniform.html //! [`Rng::gen_range`]: ../../trait.Rng.html#method.gen_range //! [`SampleUniform`]: trait.SampleUniform.html //! [`UniformSampler`]: trait.UniformSampler.html //! [`UniformInt`]: struct.UniformInt.html //! [`UniformFloat`]: struct.UniformFloat.html //! [`UniformDuration`]: struct.UniformDuration.html #[cfg(feature = "std")] use std::time::Duration; use Rng; use distributions::Distribution; use distributions::float::IntoFloat; /// Sample values uniformly between two bounds. /// /// [`Uniform::new`] and [`Uniform::new_inclusive`] construct a uniform /// distribution sampling from the given range; these functions may do extra /// work up front to make sampling of multiple values faster. /// /// When sampling from a constant range, many calculations can happen at /// compile-time and all methods should be fast; for floating-point ranges and /// the full range of integer types this should have comparable performance to /// the `Standard` distribution. /// /// Steps are taken to avoid bias which might be present in naive /// implementations; for example `rng.gen::<u8>() % 170` samples from the range /// `[0, 169]` but is twice as likely to select numbers less than 85 than other /// values. Further, the implementations here give more weight to the high-bits /// generated by the RNG than the low bits, since with some RNGs the low-bits /// are of lower quality than the high bits. /// /// Implementations should attempt to sample in `[low, high)` for /// `Uniform::new(low, high)`, i.e., excluding `high`, but this may be very /// difficult. All the primitive integer types satisfy this property, and the /// float types normally satisfy it, but rounding may mean `high` can occur. /// /// # Example /// /// ``` /// use rand::distributions::{Distribution, Uniform}; /// /// fn main() { /// let between = Uniform::from(10..10000); /// let mut rng = rand::thread_rng(); /// let mut sum = 0; /// for _ in 0..1000 { /// sum += between.sample(&mut rng); /// } /// println!("{}", sum); /// } /// ``` /// /// [`Uniform::new`]: struct.Uniform.html#method.new /// [`Uniform::new_inclusive`]: struct.Uniform.html#method.new_inclusive /// [`new`]: struct.Uniform.html#method.new /// [`new_inclusive`]: struct.Uniform.html#method.new_inclusive #[derive(Clone, Copy, Debug)] pub struct Uniform<X: SampleUniform> { inner: X::Sampler, } impl<X: SampleUniform> Uniform<X> { /// Create a new `Uniform` instance which samples uniformly from the half /// open range `[low, high)` (excluding `high`). Panics if `low >= high`. pub fn new(low: X, high: X) -> Uniform<X> { Uniform { inner: X::Sampler::new(low, high) } } /// Create a new `Uniform` instance which samples uniformly from the closed /// range `[low, high]` (inclusive). Panics if `low > high`. pub fn new_inclusive(low: X, high: X) -> Uniform<X> { Uniform { inner: X::Sampler::new_inclusive(low, high) } } } impl<X: SampleUniform> Distribution<X> for Uniform<X> { fn sample<R: Rng + ?Sized>(&self, rng: &mut R) -> X { self.inner.sample(rng) } } /// Helper trait for creating objects using the correct implementation of /// [`UniformSampler`] for the sampling type. /// /// See the [module documentation] on how to implement [`Uniform`] range /// sampling for a custom type. /// /// [`UniformSampler`]: trait.UniformSampler.html /// [module documentation]: index.html /// [`Uniform`]: struct.Uniform.html pub trait SampleUniform: Sized { /// The `UniformSampler` implementation supporting type `X`. type Sampler: UniformSampler<X = Self>; } /// Helper trait handling actual uniform sampling. /// /// See the [module documentation] on how to implement [`Uniform`] range /// sampling for a custom type. /// /// Implementation of [`sample_single`] is optional, and is only useful when /// the implementation can be faster than `Self::new(low, high).sample(rng)`. /// /// [module documentation]: index.html /// [`Uniform`]: struct.Uniform.html /// [`sample_single`]: trait.UniformSampler.html#method.sample_single pub trait UniformSampler: Sized { /// The type sampled by this implementation. type X; /// Construct self, with inclusive lower bound and exclusive upper bound /// `[low, high)`. /// /// Usually users should not call this directly but instead use /// `Uniform::new`, which asserts that `low < high` before calling this. fn new(low: Self::X, high: Self::X) -> Self; /// Construct self, with inclusive bounds `[low, high]`. /// /// Usually users should not call this directly but instead use /// `Uniform::new_inclusive`, which asserts that `low <= high` before /// calling this. fn new_inclusive(low: Self::X, high: Self::X) -> Self; /// Sample a value. fn sample<R: Rng + ?Sized>(&self, rng: &mut R) -> Self::X; /// Sample a single value uniformly from a range with inclusive lower bound /// and exclusive upper bound `[low, high)`. /// /// Usually users should not call this directly but instead use /// `Uniform::sample_single`, which asserts that `low < high` before calling /// this. /// /// Via this method, implementations can provide a method optimized for /// sampling only a single value from the specified range. The default /// implementation simply calls `UniformSampler::new` then `sample` on the /// result. fn sample_single<R: Rng + ?Sized>(low: Self::X, high: Self::X, rng: &mut R) -> Self::X { let uniform: Self = UniformSampler::new(low, high); uniform.sample(rng) } } impl<X: SampleUniform> From<::core::ops::Range<X>> for Uniform<X> { fn from(r: ::core::ops::Range<X>) -> Uniform<X> { Uniform::new(r.start, r.end) } } //////////////////////////////////////////////////////////////////////////////// // What follows are all back-ends. /// The back-end implementing [`UniformSampler`] for integer types. /// /// Unless you are implementing [`UniformSampler`] for your own type, this type /// should not be used directly, use [`Uniform`] instead. /// /// # Implementation notes /// /// For a closed range, the number of possible numbers we should generate is /// `range = (high - low + 1)`. It is not possible to end up with a uniform /// distribution if we map *all* the random integers that can be generated to /// this range. We have to map integers from a `zone` that is a multiple of the /// range. The rest of the integers, that cause a bias, are rejected. /// /// The problem with `range` is that to cover the full range of the type, it has /// to store `unsigned_max + 1`, which can't be represented. But if the range /// covers the full range of the type, no modulus is needed. A range of size 0 /// can't exist, so we use that to represent this special case. Wrapping /// arithmetic even makes representing `unsigned_max + 1` as 0 simple. /// /// We don't calculate `zone` directly, but first calculate the number of /// integers to reject. To handle `unsigned_max + 1` not fitting in the type, /// we use: /// `ints_to_reject = (unsigned_max + 1) % range;` /// `ints_to_reject = (unsigned_max - range + 1) % range;` /// /// The smallest integer PRNGs generate is `u32`. That is why for small integer /// sizes (`i8`/`u8` and `i16`/`u16`) there is an optimization: don't pick the /// largest zone that can fit in the small type, but pick the largest zone that /// can fit in an `u32`. `ints_to_reject` is always less than half the size of /// the small integer. This means the first bit of `zone` is always 1, and so /// are all the other preceding bits of a larger integer. The easiest way to /// grow the `zone` for the larger type is to simply sign extend it. /// /// An alternative to using a modulus is widening multiply: After a widening /// multiply by `range`, the result is in the high word. Then comparing the low /// word against `zone` makes sure our distribution is uniform. /// /// [`UniformSampler`]: trait.UniformSampler.html /// [`Uniform`]: struct.Uniform.html #[derive(Clone, Copy, Debug)] pub struct UniformInt<X> { low: X, range: X, zone: X, } macro_rules! uniform_int_impl { ($ty:ty, $signed:ty, $unsigned:ident, $i_large:ident, $u_large:ident) => { impl SampleUniform for $ty { type Sampler = UniformInt<$ty>; } impl UniformSampler for UniformInt<$ty> { // We play free and fast with unsigned vs signed here // (when $ty is signed), but that's fine, since the // contract of this macro is for $ty and $unsigned to be // "bit-equal", so casting between them is a no-op. type X = $ty; #[inline] // if the range is constant, this helps LLVM to do the // calculations at compile-time. fn new(low: Self::X, high: Self::X) -> Self { assert!(low < high, "Uniform::new called with `low >= high`"); UniformSampler::new_inclusive(low, high - 1) } #[inline] // if the range is constant, this helps LLVM to do the // calculations at compile-time. fn new_inclusive(low: Self::X, high: Self::X) -> Self { assert!(low <= high, "Uniform::new_inclusive called with `low > high`"); let unsigned_max = ::core::$unsigned::MAX; let range = high.wrapping_sub(low).wrapping_add(1) as $unsigned; let ints_to_reject = if range > 0 { (unsigned_max - range + 1) % range } else { 0 }; let zone = unsigned_max - ints_to_reject; UniformInt { low: low, // These are really $unsigned values, but store as $ty: range: range as $ty, zone: zone as $ty } } fn sample<R: Rng + ?Sized>(&self, rng: &mut R) -> Self::X { let range = self.range as $unsigned as $u_large; if range > 0 { // Grow `zone` to fit a type of at least 32 bits, by // sign-extending it (the first bit is always 1, so are all // the preceding bits of the larger type). // For types that already have the right size, all the // casting is a no-op. let zone = self.zone as $signed as $i_large as $u_large; loop { let v: $u_large = rng.gen(); let (hi, lo) = v.wmul(range); if lo <= zone { return self.low.wrapping_add(hi as $ty); } } } else { // Sample from the entire integer range. rng.gen() } } fn sample_single<R: Rng + ?Sized>(low: Self::X, high: Self::X, rng: &mut R) -> Self::X { assert!(low < high, "Uniform::sample_single called with low >= high"); let range = high.wrapping_sub(low) as $unsigned as $u_large; let zone = if ::core::$unsigned::MAX <= ::core::u16::MAX as $unsigned { // Using a modulus is faster than the approximation for // i8 and i16. I suppose we trade the cost of one // modulus for near-perfect branch prediction. let unsigned_max: $u_large = ::core::$u_large::MAX; let ints_to_reject = (unsigned_max - range + 1) % range; unsigned_max - ints_to_reject } else { // conservative but fast approximation range << range.leading_zeros() }; loop { let v: $u_large = rng.gen(); let (hi, lo) = v.wmul(range); if lo <= zone { return low.wrapping_add(hi as $ty); } } } } } } uniform_int_impl! { i8, i8, u8, i32, u32 } uniform_int_impl! { i16, i16, u16, i32, u32 } uniform_int_impl! { i32, i32, u32, i32, u32 } uniform_int_impl! { i64, i64, u64, i64, u64 } #[cfg(feature = "i128_support")] uniform_int_impl! { i128, i128, u128, u128, u128 } uniform_int_impl! { isize, isize, usize, isize, usize } uniform_int_impl! { u8, i8, u8, i32, u32 } uniform_int_impl! { u16, i16, u16, i32, u32 } uniform_int_impl! { u32, i32, u32, i32, u32 } uniform_int_impl! { u64, i64, u64, i64, u64 } uniform_int_impl! { usize, isize, usize, isize, usize } #[cfg(feature = "i128_support")] uniform_int_impl! { u128, u128, u128, i128, u128 } trait WideningMultiply<RHS = Self> { type Output; fn wmul(self, x: RHS) -> Self::Output; } macro_rules! wmul_impl { ($ty:ty, $wide:ty, $shift:expr) => { impl WideningMultiply for $ty { type Output = ($ty, $ty); #[inline(always)] fn wmul(self, x: $ty) -> Self::Output { let tmp = (self as $wide) * (x as $wide); ((tmp >> $shift) as $ty, tmp as $ty) } } } } wmul_impl! { u8, u16, 8 } wmul_impl! { u16, u32, 16 } wmul_impl! { u32, u64, 32 } #[cfg(feature = "i128_support")] wmul_impl! { u64, u128, 64 } // This code is a translation of the __mulddi3 function in LLVM's // compiler-rt. It is an optimised variant of the common method // `(a + b) * (c + d) = ac + ad + bc + bd`. // // For some reason LLVM can optimise the C version very well, but // keeps shuffeling registers in this Rust translation. macro_rules! wmul_impl_large { ($ty:ty, $half:expr) => { impl WideningMultiply for $ty { type Output = ($ty, $ty); #[inline(always)] fn wmul(self, b: $ty) -> Self::Output { const LOWER_MASK: $ty = !0 >> $half; let mut low = (self & LOWER_MASK).wrapping_mul(b & LOWER_MASK); let mut t = low >> $half; low &= LOWER_MASK; t += (self >> $half).wrapping_mul(b & LOWER_MASK); low += (t & LOWER_MASK) << $half; let mut high = t >> $half; t = low >> $half; low &= LOWER_MASK; t += (b >> $half).wrapping_mul(self & LOWER_MASK); low += (t & LOWER_MASK) << $half; high += t >> $half; high += (self >> $half).wrapping_mul(b >> $half); (high, low) } } } } #[cfg(not(feature = "i128_support"))] wmul_impl_large! { u64, 32 } #[cfg(feature = "i128_support")] wmul_impl_large! { u128, 64 } macro_rules! wmul_impl_usize { ($ty:ty) => { impl WideningMultiply for usize { type Output = (usize, usize); #[inline(always)] fn wmul(self, x: usize) -> Self::Output { let (high, low) = (self as $ty).wmul(x as $ty); (high as usize, low as usize) } } } } #[cfg(target_pointer_width = "32")] wmul_impl_usize! { u32 } #[cfg(target_pointer_width = "64")] wmul_impl_usize! { u64 } /// The back-end implementing [`UniformSampler`] for floating-point types. /// /// Unless you are implementing [`UniformSampler`] for your own type, this type /// should not be used directly, use [`Uniform`] instead. /// /// # Implementation notes /// /// Instead of generating a float in the `[0, 1)` range using [`Standard`], the /// `UniformFloat` implementation converts the output of an PRNG itself. This /// way one or two steps can be optimized out. /// /// The floats are first converted to a value in the `[1, 2)` interval using a /// transmute-based method, and then mapped to the expected range with a /// multiply and addition. Values produced this way have what equals 22 bits of /// random digits for an `f32`, and 52 for an `f64`. /// /// Currently there is no difference between [`new`] and [`new_inclusive`], /// because the boundaries of a floats range are a bit of a fuzzy concept due to /// rounding errors. /// /// [`UniformSampler`]: trait.UniformSampler.html /// [`new`]: trait.UniformSampler.html#tymethod.new /// [`new_inclusive`]: trait.UniformSampler.html#tymethod.new_inclusive /// [`Uniform`]: struct.Uniform.html /// [`Standard`]: ../struct.Standard.html #[derive(Clone, Copy, Debug)] pub struct UniformFloat<X> { scale: X, offset: X, } macro_rules! uniform_float_impl { ($ty:ty, $bits_to_discard:expr, $next_u:ident) => { impl SampleUniform for $ty { type Sampler = UniformFloat<$ty>; } impl UniformSampler for UniformFloat<$ty> { type X = $ty; fn new(low: Self::X, high: Self::X) -> Self { assert!(low < high, "Uniform::new called with `low >= high`"); let scale = high - low; let offset = low - scale; UniformFloat { scale: scale, offset: offset, } } fn new_inclusive(low: Self::X, high: Self::X) -> Self { assert!(low <= high, "Uniform::new_inclusive called with `low > high`"); let scale = high - low; let offset = low - scale; UniformFloat { scale: scale, offset: offset, } } fn sample<R: Rng + ?Sized>(&self, rng: &mut R) -> Self::X { // Generate a value in the range [1, 2) let value1_2 = (rng.$next_u() >> $bits_to_discard) .into_float_with_exponent(0); // We don't use `f64::mul_add`, because it is not available with // `no_std`. Furthermore, it is slower for some targets (but // faster for others). However, the order of multiplication and // addition is important, because on some platforms (e.g. ARM) // it will be optimized to a single (non-FMA) instruction. value1_2 * self.scale + self.offset } fn sample_single<R: Rng + ?Sized>(low: Self::X, high: Self::X, rng: &mut R) -> Self::X { assert!(low < high, "Uniform::sample_single called with low >= high"); let scale = high - low; let offset = low - scale; // Generate a value in the range [1, 2) let value1_2 = (rng.$next_u() >> $bits_to_discard) .into_float_with_exponent(0); // Doing multiply before addition allows some architectures to // use a single instruction. value1_2 * scale + offset } } } } uniform_float_impl! { f32, 32 - 23, next_u32 } uniform_float_impl! { f64, 64 - 52, next_u64 } /// The back-end implementing [`UniformSampler`] for `Duration`. /// /// Unless you are implementing [`UniformSampler`] for your own types, this type /// should not be used directly, use [`Uniform`] instead. /// /// [`UniformSampler`]: trait.UniformSampler.html /// [`Uniform`]: struct.Uniform.html #[cfg(feature = "std")] #[derive(Clone, Copy, Debug)] pub struct UniformDuration { offset: Duration, mode: UniformDurationMode, } #[cfg(feature = "std")] #[derive(Debug, Copy, Clone)] enum UniformDurationMode { Small { nanos: Uniform<u64>, }, Large { size: Duration, secs: Uniform<u64>, } } #[cfg(feature = "std")] impl SampleUniform for Duration { type Sampler = UniformDuration; } #[cfg(feature = "std")] impl UniformSampler for UniformDuration { type X = Duration; #[inline] fn new(low: Duration, high: Duration) -> UniformDuration { assert!(low < high, "Uniform::new called with `low >= high`"); UniformDuration::new_inclusive(low, high - Duration::new(0, 1)) } #[inline] fn new_inclusive(low: Duration, high: Duration) -> UniformDuration { assert!(low <= high, "Uniform::new_inclusive called with `low > high`"); let size = high - low; let nanos = size .as_secs() .checked_mul(1_000_000_000) .and_then(|n| n.checked_add(size.subsec_nanos() as u64)); let mode = match nanos { Some(nanos) => { UniformDurationMode::Small { nanos: Uniform::new_inclusive(0, nanos), } } None => { UniformDurationMode::Large { size: size, secs: Uniform::new_inclusive(0, size.as_secs()), } } }; UniformDuration { mode, offset: low, } } #[inline] fn sample<R: Rng + ?Sized>(&self, rng: &mut R) -> Duration { let d = match self.mode { UniformDurationMode::Small { nanos } => { let nanos = nanos.sample(rng); Duration::new(nanos / 1_000_000_000, (nanos % 1_000_000_000) as u32) } UniformDurationMode::Large { size, secs } => { // constant folding means this is at least as fast as `gen_range` let nano_range = Uniform::new(0, 1_000_000_000); loop { let d = Duration::new(secs.sample(rng), nano_range.sample(rng)); if d <= size { break d; } } } }; self.offset + d } } #[cfg(test)] mod tests { use Rng; use distributions::uniform::{Uniform, UniformSampler, UniformFloat, SampleUniform}; #[should_panic] #[test] fn test_uniform_bad_limits_equal_int() { Uniform::new(10, 10); } #[should_panic] #[test] fn test_uniform_bad_limits_equal_float() { Uniform::new(10., 10.); } #[test] fn test_uniform_good_limits_equal_int() { let mut rng = ::test::rng(804); let dist = Uniform::new_inclusive(10, 10); for _ in 0..20 { assert_eq!(rng.sample(dist), 10); } } #[test] fn test_uniform_good_limits_equal_float() { let mut rng = ::test::rng(805); let dist = Uniform::new_inclusive(10., 10.); for _ in 0..20 { assert_eq!(rng.sample(dist), 10.); } } #[should_panic] #[test] fn test_uniform_bad_limits_flipped_int() { Uniform::new(10, 5); } #[should_panic] #[test] fn test_uniform_bad_limits_flipped_float() { Uniform::new(10., 5.); } #[test] fn test_integers() { let mut rng = ::test::rng(251); macro_rules! t { ($($ty:ident),*) => {{ $( let v: &[($ty, $ty)] = &[(0, 10), (10, 127), (::core::$ty::MIN, ::core::$ty::MAX)]; for &(low, high) in v.iter() { let my_uniform = Uniform::new(low, high); for _ in 0..1000 { let v: $ty = rng.sample(my_uniform); assert!(low <= v && v < high); } let my_uniform = Uniform::new_inclusive(low, high); for _ in 0..1000 { let v: $ty = rng.sample(my_uniform); assert!(low <= v && v <= high); } for _ in 0..1000 { let v: $ty = rng.gen_range(low, high); assert!(low <= v && v < high); } } )* }} } t!(i8, i16, i32, i64, isize, u8, u16, u32, u64, usize); #[cfg(feature = "i128_support")] t!(i128, u128) } #[test] fn test_floats() { let mut rng = ::test::rng(252); macro_rules! t { ($($ty:ty),*) => {{ $( let v: &[($ty, $ty)] = &[(0.0, 100.0), (-1e35, -1e25), (1e-35, 1e-25), (-1e35, 1e35)]; for &(low, high) in v.iter() { let my_uniform = Uniform::new(low, high); for _ in 0..1000 { let v: $ty = rng.sample(my_uniform); assert!(low <= v && v < high); } } )* }} } t!(f32, f64) } #[test] #[cfg(feature = "std")] fn test_durations() { use std::time::Duration; let mut rng = ::test::rng(253); let v = &[(Duration::new(10, 50000), Duration::new(100, 1234)), (Duration::new(0, 100), Duration::new(1, 50)), (Duration::new(0, 0), Duration::new(u64::max_value(), 999_999_999))]; for &(low, high) in v.iter() { let my_uniform = Uniform::new(low, high); for _ in 0..1000 { let v = rng.sample(my_uniform); assert!(low <= v && v < high); } } } #[test] fn test_custom_uniform() { #[derive(Clone, Copy, PartialEq, PartialOrd)] struct MyF32 { x: f32, } #[derive(Clone, Copy, Debug)] struct UniformMyF32 { inner: UniformFloat<f32>, } impl UniformSampler for UniformMyF32 { type X = MyF32; fn new(low: Self::X, high: Self::X) -> Self { UniformMyF32 { inner: UniformFloat::<f32>::new(low.x, high.x), } } fn new_inclusive(low: Self::X, high: Self::X) -> Self { UniformSampler::new(low, high) } fn sample<R: Rng + ?Sized>(&self, rng: &mut R) -> Self::X { MyF32 { x: self.inner.sample(rng) } } } impl SampleUniform for MyF32 { type Sampler = UniformMyF32; } let (low, high) = (MyF32{ x: 17.0f32 }, MyF32{ x: 22.0f32 }); let uniform = Uniform::new(low, high); let mut rng = ::test::rng(804); for _ in 0..100 { let x: MyF32 = rng.sample(uniform); assert!(low <= x && x < high); } } #[test] fn test_uniform_from_std_range() { let r = Uniform::from(2u32..7); assert_eq!(r.inner.low, 2); assert_eq!(r.inner.range, 5); let r = Uniform::from(2.0f64..7.0); assert_eq!(r.inner.offset, -3.0); assert_eq!(r.inner.scale, 5.0); } }