1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784
// Copyright 2013-2017 The Rust Project Developers. See the COPYRIGHT // file at the top-level directory of this distribution and at // https://rust-lang.org/COPYRIGHT. // // Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or // https://www.apache.org/licenses/LICENSE-2.0> or the MIT license // <LICENSE-MIT or https://opensource.org/licenses/MIT>, at your // option. This file may not be copied, modified, or distributed // except according to those terms. //! Generating random samples from probability distributions. //! //! This module is the home of the [`Distribution`] trait and several of its //! implementations. It is the workhorse behind some of the convenient //! functionality of the [`Rng`] trait, including [`gen`], [`gen_range`] and //! of course [`sample`]. //! //! Abstractly, a [probability distribution] describes the probability of //! occurance of each value in its sample space. //! //! More concretely, an implementation of `Distribution<T>` for type `X` is an //! algorithm for choosing values from the sample space (a subset of `T`) //! according to the distribution `X` represents, using an external source of //! randomness (an RNG supplied to the `sample` function). //! //! A type `X` may implement `Distribution<T>` for multiple types `T`. //! Any type implementing [`Distribution`] is stateless (i.e. immutable), //! but it may have internal parameters set at construction time (for example, //! [`Uniform`] allows specification of its sample space as a range within `T`). //! //! //! # The `Standard` distribution //! //! The [`Standard`] distribution is important to mention. This is the //! distribution used by [`Rng::gen()`] and represents the "default" way to //! produce a random value for many different types, including most primitive //! types, tuples, arrays, and a few derived types. See the documentation of //! [`Standard`] for more details. //! //! Implementing `Distribution<T>` for [`Standard`] for user types `T` makes it //! possible to generate type `T` with [`Rng::gen()`], and by extension also //! with the [`random()`] function. //! //! //! # Distribution to sample from a `Uniform` range //! //! The [`Uniform`] distribution is more flexible than [`Standard`], but also //! more specialised: it supports fewer target types, but allows the sample //! space to be specified as an arbitrary range within its target type `T`. //! Both [`Standard`] and [`Uniform`] are in some sense uniform distributions. //! //! Values may be sampled from this distribution using [`Rng::gen_range`] or //! by creating a distribution object with [`Uniform::new`], //! [`Uniform::new_inclusive`] or `From<Range>`. When the range limits are not //! known at compile time it is typically faster to reuse an existing //! distribution object than to call [`Rng::gen_range`]. //! //! User types `T` may also implement `Distribution<T>` for [`Uniform`], //! although this is less straightforward than for [`Standard`] (see the //! documentation in the [`uniform` module]. Doing so enables generation of //! values of type `T` with [`Rng::gen_range`]. //! //! //! # Other distributions //! //! There are surprisingly many ways to uniformly generate random floats. A //! range between 0 and 1 is standard, but the exact bounds (open vs closed) //! and accuracy differ. In addition to the [`Standard`] distribution Rand offers //! [`Open01`] and [`OpenClosed01`]. See [Floating point implementation] for //! more details. //! //! [`Alphanumeric`] is a simple distribution to sample random letters and //! numbers of the `char` type; in contrast [`Standard`] may sample any valid //! `char`. //! //! //! # Non-uniform probability distributions //! //! Rand currently provides the following probability distributions: //! //! - Related to real-valued quantities that grow linearly //! (e.g. errors, offsets): //! - [`Normal`] distribution, and [`StandardNormal`] as a primitive //! - [`Cauchy`] distribution //! - Related to Bernoulli trials (yes/no events, with a given probability): //! - [`Binomial`] distribution //! - [`Bernoulli`] distribution, similar to [`Rng::gen_bool`]. //! - Related to positive real-valued quantities that grow exponentially //! (e.g. prices, incomes, populations): //! - [`LogNormal`] distribution //! - Related to the occurrence of independent events at a given rate: //! - [`Poisson`] distribution //! - [`Exp`]onential distribution, and [`Exp1`] as a primitive //! - Gamma and derived distributions: //! - [`Gamma`] distribution //! - [`ChiSquared`] distribution //! - [`StudentT`] distribution //! - [`FisherF`] distribution //! //! //! # Examples //! //! Sampling from a distribution: //! //! ``` //! use rand::{thread_rng, Rng}; //! use rand::distributions::Exp; //! //! let exp = Exp::new(2.0); //! let v = thread_rng().sample(exp); //! println!("{} is from an Exp(2) distribution", v); //! ``` //! //! Implementing the [`Standard`] distribution for a user type: //! //! ``` //! # #![allow(dead_code)] //! use rand::Rng; //! use rand::distributions::{Distribution, Standard}; //! //! struct MyF32 { //! x: f32, //! } //! //! impl Distribution<MyF32> for Standard { //! fn sample<R: Rng + ?Sized>(&self, rng: &mut R) -> MyF32 { //! MyF32 { x: rng.gen() } //! } //! } //! ``` //! //! //! [probability distribution]: https://en.wikipedia.org/wiki/Probability_distribution //! [`Distribution`]: trait.Distribution.html //! [`gen_range`]: ../trait.Rng.html#method.gen_range //! [`gen`]: ../trait.Rng.html#method.gen //! [`sample`]: ../trait.Rng.html#method.sample //! [`new_inclusive`]: struct.Uniform.html#method.new_inclusive //! [`random()`]: ../fn.random.html //! [`Rng::gen_bool`]: ../trait.Rng.html#method.gen_bool //! [`Rng::gen_range`]: ../trait.Rng.html#method.gen_range //! [`Rng::gen()`]: ../trait.Rng.html#method.gen //! [`Rng`]: ../trait.Rng.html //! [`uniform` module]: uniform/index.html //! [Floating point implementation]: struct.Standard.html#floating-point-implementation // distributions //! [`Alphanumeric`]: struct.Alphanumeric.html //! [`Bernoulli`]: struct.Bernoulli.html //! [`Binomial`]: struct.Binomial.html //! [`Cauchy`]: struct.Cauchy.html //! [`ChiSquared`]: struct.ChiSquared.html //! [`Exp`]: struct.Exp.html //! [`Exp1`]: struct.Exp1.html //! [`FisherF`]: struct.FisherF.html //! [`Gamma`]: struct.Gamma.html //! [`LogNormal`]: struct.LogNormal.html //! [`Normal`]: struct.Normal.html //! [`Open01`]: struct.Open01.html //! [`OpenClosed01`]: struct.OpenClosed01.html //! [`Pareto`]: struct.Pareto.html //! [`Poisson`]: struct.Poisson.html //! [`Standard`]: struct.Standard.html //! [`StandardNormal`]: struct.StandardNormal.html //! [`StudentT`]: struct.StudentT.html //! [`Uniform`]: struct.Uniform.html //! [`Uniform::new`]: struct.Uniform.html#method.new //! [`Uniform::new_inclusive`]: struct.Uniform.html#method.new_inclusive use Rng; #[doc(inline)] pub use self::other::Alphanumeric; #[doc(inline)] pub use self::uniform::Uniform; #[doc(inline)] pub use self::float::{OpenClosed01, Open01}; #[deprecated(since="0.5.0", note="use Uniform instead")] pub use self::uniform::Uniform as Range; #[cfg(feature="std")] #[doc(inline)] pub use self::gamma::{Gamma, ChiSquared, FisherF, StudentT}; #[cfg(feature="std")] #[doc(inline)] pub use self::normal::{Normal, LogNormal, StandardNormal}; #[cfg(feature="std")] #[doc(inline)] pub use self::exponential::{Exp, Exp1}; #[cfg(feature="std")] #[doc(inline)] pub use self::pareto::Pareto; #[cfg(feature = "std")] #[doc(inline)] pub use self::poisson::Poisson; #[cfg(feature = "std")] #[doc(inline)] pub use self::binomial::Binomial; #[doc(inline)] pub use self::bernoulli::Bernoulli; #[cfg(feature = "std")] #[doc(inline)] pub use self::cauchy::Cauchy; pub mod uniform; #[cfg(feature="std")] #[doc(hidden)] pub mod gamma; #[cfg(feature="std")] #[doc(hidden)] pub mod normal; #[cfg(feature="std")] #[doc(hidden)] pub mod exponential; #[cfg(feature="std")] #[doc(hidden)] pub mod pareto; #[cfg(feature = "std")] #[doc(hidden)] pub mod poisson; #[cfg(feature = "std")] #[doc(hidden)] pub mod binomial; #[doc(hidden)] pub mod bernoulli; #[cfg(feature = "std")] #[doc(hidden)] pub mod cauchy; mod float; mod integer; #[cfg(feature="std")] mod log_gamma; mod other; #[cfg(feature="std")] mod ziggurat_tables; #[cfg(feature="std")] use distributions::float::IntoFloat; /// Types that can be used to create a random instance of `Support`. #[deprecated(since="0.5.0", note="use Distribution instead")] pub trait Sample<Support> { /// Generate a random value of `Support`, using `rng` as the /// source of randomness. fn sample<R: Rng>(&mut self, rng: &mut R) -> Support; } /// `Sample`s that do not require keeping track of state. /// /// Since no state is recorded, each sample is (statistically) /// independent of all others, assuming the `Rng` used has this /// property. #[allow(deprecated)] #[deprecated(since="0.5.0", note="use Distribution instead")] pub trait IndependentSample<Support>: Sample<Support> { /// Generate a random value. fn ind_sample<R: Rng>(&self, &mut R) -> Support; } /// DEPRECATED: Use `distributions::uniform` instead. #[deprecated(since="0.5.0", note="use uniform instead")] pub mod range { pub use distributions::uniform::Uniform as Range; pub use distributions::uniform::SampleUniform as SampleRange; } #[allow(deprecated)] mod impls { use Rng; use distributions::{Distribution, Sample, IndependentSample, WeightedChoice}; #[cfg(feature="std")] use distributions::exponential::Exp; #[cfg(feature="std")] use distributions::gamma::{Gamma, ChiSquared, FisherF, StudentT}; #[cfg(feature="std")] use distributions::normal::{Normal, LogNormal}; use distributions::range::{Range, SampleRange}; impl<'a, T: Clone> Sample<T> for WeightedChoice<'a, T> { fn sample<R: Rng>(&mut self, rng: &mut R) -> T { Distribution::sample(self, rng) } } impl<'a, T: Clone> IndependentSample<T> for WeightedChoice<'a, T> { fn ind_sample<R: Rng>(&self, rng: &mut R) -> T { Distribution::sample(self, rng) } } impl<T: SampleRange> Sample<T> for Range<T> { fn sample<R: Rng>(&mut self, rng: &mut R) -> T { Distribution::sample(self, rng) } } impl<T: SampleRange> IndependentSample<T> for Range<T> { fn ind_sample<R: Rng>(&self, rng: &mut R) -> T { Distribution::sample(self, rng) } } #[cfg(feature="std")] macro_rules! impl_f64 { ($($name: ident), *) => { $( impl Sample<f64> for $name { fn sample<R: Rng>(&mut self, rng: &mut R) -> f64 { Distribution::sample(self, rng) } } impl IndependentSample<f64> for $name { fn ind_sample<R: Rng>(&self, rng: &mut R) -> f64 { Distribution::sample(self, rng) } } )* } } #[cfg(feature="std")] impl_f64!(Exp, Gamma, ChiSquared, FisherF, StudentT, Normal, LogNormal); } /// Types (distributions) that can be used to create a random instance of `T`. /// /// It is possible to sample from a distribution through both the /// `Distribution` and [`Rng`] traits, via `distr.sample(&mut rng)` and /// `rng.sample(distr)`. They also both offer the [`sample_iter`] method, which /// produces an iterator that samples from the distribution. /// /// All implementations are expected to be immutable; this has the significant /// advantage of not needing to consider thread safety, and for most /// distributions efficient state-less sampling algorithms are available. /// /// [`Rng`]: ../trait.Rng.html /// [`sample_iter`]: trait.Distribution.html#method.sample_iter pub trait Distribution<T> { /// Generate a random value of `T`, using `rng` as the source of randomness. fn sample<R: Rng + ?Sized>(&self, rng: &mut R) -> T; /// Create an iterator that generates random values of `T`, using `rng` as /// the source of randomness. /// /// # Example /// /// ``` /// use rand::thread_rng; /// use rand::distributions::{Distribution, Alphanumeric, Uniform, Standard}; /// /// let mut rng = thread_rng(); /// /// // Vec of 16 x f32: /// let v: Vec<f32> = Standard.sample_iter(&mut rng).take(16).collect(); /// /// // String: /// let s: String = Alphanumeric.sample_iter(&mut rng).take(7).collect(); /// /// // Dice-rolling: /// let die_range = Uniform::new_inclusive(1, 6); /// let mut roll_die = die_range.sample_iter(&mut rng); /// while roll_die.next().unwrap() != 6 { /// println!("Not a 6; rolling again!"); /// } /// ``` fn sample_iter<'a, R>(&'a self, rng: &'a mut R) -> DistIter<'a, Self, R, T> where Self: Sized, R: Rng { DistIter { distr: self, rng: rng, phantom: ::core::marker::PhantomData, } } } impl<'a, T, D: Distribution<T>> Distribution<T> for &'a D { fn sample<R: Rng + ?Sized>(&self, rng: &mut R) -> T { (*self).sample(rng) } } /// An iterator that generates random values of `T` with distribution `D`, /// using `R` as the source of randomness. /// /// This `struct` is created by the [`sample_iter`] method on [`Distribution`]. /// See its documentation for more. /// /// [`Distribution`]: trait.Distribution.html /// [`sample_iter`]: trait.Distribution.html#method.sample_iter #[derive(Debug)] pub struct DistIter<'a, D: 'a, R: 'a, T> { distr: &'a D, rng: &'a mut R, phantom: ::core::marker::PhantomData<T>, } impl<'a, D, R, T> Iterator for DistIter<'a, D, R, T> where D: Distribution<T>, R: Rng + 'a { type Item = T; #[inline(always)] fn next(&mut self) -> Option<T> { Some(self.distr.sample(self.rng)) } fn size_hint(&self) -> (usize, Option<usize>) { (usize::max_value(), None) } } /// A generic random value distribution, implemented for many primitive types. /// Usually generates values with a numerically uniform distribution, and with a /// range appropriate to the type. /// /// ## Built-in Implementations /// /// Assuming the provided `Rng` is well-behaved, these implementations /// generate values with the following ranges and distributions: /// /// * Integers (`i32`, `u32`, `isize`, `usize`, etc.): Uniformly distributed /// over all values of the type. /// * `char`: Uniformly distributed over all Unicode scalar values, i.e. all /// code points in the range `0...0x10_FFFF`, except for the range /// `0xD800...0xDFFF` (the surrogate code points). This includes /// unassigned/reserved code points. /// * `bool`: Generates `false` or `true`, each with probability 0.5. /// * Floating point types (`f32` and `f64`): Uniformly distributed in the /// half-open range `[0, 1)`. See notes below. /// * Wrapping integers (`Wrapping<T>`), besides the type identical to their /// normal integer variants. /// /// The following aggregate types also implement the distribution `Standard` as /// long as their component types implement it: /// /// * Tuples and arrays: Each element of the tuple or array is generated /// independently, using the `Standard` distribution recursively. /// * `Option<T>` where `Standard` is implemented for `T`: Returns `None` with /// probability 0.5; otherwise generates a random `x: T` and returns `Some(x)`. /// /// # Example /// ``` /// use rand::prelude::*; /// use rand::distributions::Standard; /// /// let val: f32 = SmallRng::from_entropy().sample(Standard); /// println!("f32 from [0, 1): {}", val); /// ``` /// /// # Floating point implementation /// The floating point implementations for `Standard` generate a random value in /// the half-open interval `[0, 1)`, i.e. including 0 but not 1. /// /// All values that can be generated are of the form `n * ε/2`. For `f32` /// the 23 most significant random bits of a `u32` are used and for `f64` the /// 53 most significant bits of a `u64` are used. The conversion uses the /// multiplicative method: `(rng.gen::<$uty>() >> N) as $ty * (ε/2)`. /// /// See also: [`Open01`] which samples from `(0, 1)`, [`OpenClosed01`] which /// samples from `(0, 1]` and `Rng::gen_range(0, 1)` which also samples from /// `[0, 1)`. Note that `Open01` and `gen_range` (which uses [`Uniform`]) use /// transmute-based methods which yield 1 bit less precision but may perform /// faster on some architectures (on modern Intel CPUs all methods have /// approximately equal performance). /// /// [`Open01`]: struct.Open01.html /// [`OpenClosed01`]: struct.OpenClosed01.html /// [`Uniform`]: uniform/struct.Uniform.html #[derive(Clone, Copy, Debug)] pub struct Standard; #[allow(deprecated)] impl<T> ::Rand for T where Standard: Distribution<T> { fn rand<R: Rng>(rng: &mut R) -> Self { Standard.sample(rng) } } /// A value with a particular weight for use with `WeightedChoice`. #[derive(Copy, Clone, Debug)] pub struct Weighted<T> { /// The numerical weight of this item pub weight: u32, /// The actual item which is being weighted pub item: T, } /// A distribution that selects from a finite collection of weighted items. /// /// Each item has an associated weight that influences how likely it /// is to be chosen: higher weight is more likely. /// /// The `Clone` restriction is a limitation of the `Distribution` trait. /// Note that `&T` is (cheaply) `Clone` for all `T`, as is `u32`, so one can /// store references or indices into another vector. /// /// # Example /// /// ``` /// use rand::distributions::{Weighted, WeightedChoice, Distribution}; /// /// let mut items = vec!(Weighted { weight: 2, item: 'a' }, /// Weighted { weight: 4, item: 'b' }, /// Weighted { weight: 1, item: 'c' }); /// let wc = WeightedChoice::new(&mut items); /// let mut rng = rand::thread_rng(); /// for _ in 0..16 { /// // on average prints 'a' 4 times, 'b' 8 and 'c' twice. /// println!("{}", wc.sample(&mut rng)); /// } /// ``` #[derive(Debug)] pub struct WeightedChoice<'a, T:'a> { items: &'a mut [Weighted<T>], weight_range: Uniform<u32>, } impl<'a, T: Clone> WeightedChoice<'a, T> { /// Create a new `WeightedChoice`. /// /// Panics if: /// /// - `items` is empty /// - the total weight is 0 /// - the total weight is larger than a `u32` can contain. pub fn new(items: &'a mut [Weighted<T>]) -> WeightedChoice<'a, T> { // strictly speaking, this is subsumed by the total weight == 0 case assert!(!items.is_empty(), "WeightedChoice::new called with no items"); let mut running_total: u32 = 0; // we convert the list from individual weights to cumulative // weights so we can binary search. This *could* drop elements // with weight == 0 as an optimisation. for item in items.iter_mut() { running_total = match running_total.checked_add(item.weight) { Some(n) => n, None => panic!("WeightedChoice::new called with a total weight \ larger than a u32 can contain") }; item.weight = running_total; } assert!(running_total != 0, "WeightedChoice::new called with a total weight of 0"); WeightedChoice { items, // we're likely to be generating numbers in this range // relatively often, so might as well cache it weight_range: Uniform::new(0, running_total) } } } impl<'a, T: Clone> Distribution<T> for WeightedChoice<'a, T> { fn sample<R: Rng + ?Sized>(&self, rng: &mut R) -> T { // we want to find the first element that has cumulative // weight > sample_weight, which we do by binary since the // cumulative weights of self.items are sorted. // choose a weight in [0, total_weight) let sample_weight = self.weight_range.sample(rng); // short circuit when it's the first item if sample_weight < self.items[0].weight { return self.items[0].item.clone(); } let mut idx = 0; let mut modifier = self.items.len(); // now we know that every possibility has an element to the // left, so we can just search for the last element that has // cumulative weight <= sample_weight, then the next one will // be "it". (Note that this greatest element will never be the // last element of the vector, since sample_weight is chosen // in [0, total_weight) and the cumulative weight of the last // one is exactly the total weight.) while modifier > 1 { let i = idx + modifier / 2; if self.items[i].weight <= sample_weight { // we're small, so look to the right, but allow this // exact element still. idx = i; // we need the `/ 2` to round up otherwise we'll drop // the trailing elements when `modifier` is odd. modifier += 1; } else { // otherwise we're too big, so go left. (i.e. do // nothing) } modifier /= 2; } self.items[idx + 1].item.clone() } } /// Sample a random number using the Ziggurat method (specifically the /// ZIGNOR variant from Doornik 2005). Most of the arguments are /// directly from the paper: /// /// * `rng`: source of randomness /// * `symmetric`: whether this is a symmetric distribution, or one-sided with P(x < 0) = 0. /// * `X`: the $x_i$ abscissae. /// * `F`: precomputed values of the PDF at the $x_i$, (i.e. $f(x_i)$) /// * `F_DIFF`: precomputed values of $f(x_i) - f(x_{i+1})$ /// * `pdf`: the probability density function /// * `zero_case`: manual sampling from the tail when we chose the /// bottom box (i.e. i == 0) // the perf improvement (25-50%) is definitely worth the extra code // size from force-inlining. #[cfg(feature="std")] #[inline(always)] fn ziggurat<R: Rng + ?Sized, P, Z>( rng: &mut R, symmetric: bool, x_tab: ziggurat_tables::ZigTable, f_tab: ziggurat_tables::ZigTable, mut pdf: P, mut zero_case: Z) -> f64 where P: FnMut(f64) -> f64, Z: FnMut(&mut R, f64) -> f64 { loop { // As an optimisation we re-implement the conversion to a f64. // From the remaining 12 most significant bits we use 8 to construct `i`. // This saves us generating a whole extra random number, while the added // precision of using 64 bits for f64 does not buy us much. let bits = rng.next_u64(); let i = bits as usize & 0xff; let u = if symmetric { // Convert to a value in the range [2,4) and substract to get [-1,1) // We can't convert to an open range directly, that would require // substracting `3.0 - EPSILON`, which is not representable. // It is possible with an extra step, but an open range does not // seem neccesary for the ziggurat algorithm anyway. (bits >> 12).into_float_with_exponent(1) - 3.0 } else { // Convert to a value in the range [1,2) and substract to get (0,1) (bits >> 12).into_float_with_exponent(0) - (1.0 - ::core::f64::EPSILON / 2.0) }; let x = u * x_tab[i]; let test_x = if symmetric { x.abs() } else {x}; // algebraically equivalent to |u| < x_tab[i+1]/x_tab[i] (or u < x_tab[i+1]/x_tab[i]) if test_x < x_tab[i + 1] { return x; } if i == 0 { return zero_case(rng, u); } // algebraically equivalent to f1 + DRanU()*(f0 - f1) < 1 if f_tab[i + 1] + (f_tab[i] - f_tab[i + 1]) * rng.gen::<f64>() < pdf(x) { return x; } } } #[cfg(test)] mod tests { use Rng; use rngs::mock::StepRng; use super::{WeightedChoice, Weighted, Distribution}; #[test] fn test_weighted_choice() { // this makes assumptions about the internal implementation of // WeightedChoice. It may fail when the implementation in // `distributions::uniform::UniformInt` changes. macro_rules! t { ($items:expr, $expected:expr) => {{ let mut items = $items; let mut total_weight = 0; for item in &items { total_weight += item.weight; } let wc = WeightedChoice::new(&mut items); let expected = $expected; // Use extremely large steps between the random numbers, because // we test with small ranges and `UniformInt` is designed to prefer // the most significant bits. let mut rng = StepRng::new(0, !0 / (total_weight as u64)); for &val in expected.iter() { assert_eq!(wc.sample(&mut rng), val) } }} } t!([Weighted { weight: 1, item: 10}], [10]); // skip some t!([Weighted { weight: 0, item: 20}, Weighted { weight: 2, item: 21}, Weighted { weight: 0, item: 22}, Weighted { weight: 1, item: 23}], [21, 21, 23]); // different weights t!([Weighted { weight: 4, item: 30}, Weighted { weight: 3, item: 31}], [30, 31, 30, 31, 30, 31, 30]); // check that we're binary searching // correctly with some vectors of odd // length. t!([Weighted { weight: 1, item: 40}, Weighted { weight: 1, item: 41}, Weighted { weight: 1, item: 42}, Weighted { weight: 1, item: 43}, Weighted { weight: 1, item: 44}], [40, 41, 42, 43, 44]); t!([Weighted { weight: 1, item: 50}, Weighted { weight: 1, item: 51}, Weighted { weight: 1, item: 52}, Weighted { weight: 1, item: 53}, Weighted { weight: 1, item: 54}, Weighted { weight: 1, item: 55}, Weighted { weight: 1, item: 56}], [50, 54, 51, 55, 52, 56, 53]); } #[test] fn test_weighted_clone_initialization() { let initial : Weighted<u32> = Weighted {weight: 1, item: 1}; let clone = initial.clone(); assert_eq!(initial.weight, clone.weight); assert_eq!(initial.item, clone.item); } #[test] #[should_panic] fn test_weighted_clone_change_weight() { let initial : Weighted<u32> = Weighted {weight: 1, item: 1}; let mut clone = initial.clone(); clone.weight = 5; assert_eq!(initial.weight, clone.weight); } #[test] #[should_panic] fn test_weighted_clone_change_item() { let initial : Weighted<u32> = Weighted {weight: 1, item: 1}; let mut clone = initial.clone(); clone.item = 5; assert_eq!(initial.item, clone.item); } #[test] #[should_panic] fn test_weighted_choice_no_items() { WeightedChoice::<isize>::new(&mut []); } #[test] #[should_panic] fn test_weighted_choice_zero_weight() { WeightedChoice::new(&mut [Weighted { weight: 0, item: 0}, Weighted { weight: 0, item: 1}]); } #[test] #[should_panic] fn test_weighted_choice_weight_overflows() { let x = ::core::u32::MAX / 2; // x + x + 2 is the overflow WeightedChoice::new(&mut [Weighted { weight: x, item: 0 }, Weighted { weight: 1, item: 1 }, Weighted { weight: x, item: 2 }, Weighted { weight: 1, item: 3 }]); } #[test] #[allow(deprecated)] fn test_backwards_compat_sample() { use distributions::{Sample, IndependentSample}; struct Constant<T> { val: T } impl<T: Copy> Sample<T> for Constant<T> { fn sample<R: Rng>(&mut self, _: &mut R) -> T { self.val } } impl<T: Copy> IndependentSample<T> for Constant<T> { fn ind_sample<R: Rng>(&self, _: &mut R) -> T { self.val } } let mut sampler = Constant{ val: 293 }; assert_eq!(sampler.sample(&mut ::test::rng(233)), 293); assert_eq!(sampler.ind_sample(&mut ::test::rng(234)), 293); } #[cfg(feature="std")] #[test] #[allow(deprecated)] fn test_backwards_compat_exp() { use distributions::{IndependentSample, Exp}; let sampler = Exp::new(1.0); sampler.ind_sample(&mut ::test::rng(235)); } #[cfg(feature="std")] #[test] fn test_distributions_iter() { use distributions::Normal; let mut rng = ::test::rng(210); let distr = Normal::new(10.0, 10.0); let results: Vec<_> = distr.sample_iter(&mut rng).take(100).collect(); println!("{:?}", results); } }