1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
// Copyright 2017 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// https://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// https://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or https://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.

//! Basic floating-point number distributions

use core::mem;
use Rng;
use distributions::{Distribution, Standard};

/// A distribution to sample floating point numbers uniformly in the half-open
/// interval `(0, 1]`, i.e. including 1 but not 0.
///
/// All values that can be generated are of the form `n * ε/2`. For `f32`
/// the 23 most significant random bits of a `u32` are used and for `f64` the
/// 53 most significant bits of a `u64` are used. The conversion uses the
/// multiplicative method.
///
/// See also: [`Standard`] which samples from `[0, 1)`, [`Open01`]
/// which samples from `(0, 1)` and [`Uniform`] which samples from arbitrary
/// ranges.
///
/// # Example
/// ```
/// use rand::{thread_rng, Rng};
/// use rand::distributions::OpenClosed01;
///
/// let val: f32 = thread_rng().sample(OpenClosed01);
/// println!("f32 from (0, 1): {}", val);
/// ```
///
/// [`Standard`]: struct.Standard.html
/// [`Open01`]: struct.Open01.html
/// [`Uniform`]: uniform/struct.Uniform.html
#[derive(Clone, Copy, Debug)]
pub struct OpenClosed01;

/// A distribution to sample floating point numbers uniformly in the open
/// interval `(0, 1)`, i.e. not including either endpoint.
///
/// All values that can be generated are of the form `n * ε + ε/2`. For `f32`
/// the 22 most significant random bits of an `u32` are used, for `f64` 52 from
/// an `u64`. The conversion uses a transmute-based method.
///
/// See also: [`Standard`] which samples from `[0, 1)`, [`OpenClosed01`]
/// which samples from `(0, 1]` and [`Uniform`] which samples from arbitrary
/// ranges.
///
/// # Example
/// ```
/// use rand::{thread_rng, Rng};
/// use rand::distributions::Open01;
///
/// let val: f32 = thread_rng().sample(Open01);
/// println!("f32 from (0, 1): {}", val);
/// ```
///
/// [`Standard`]: struct.Standard.html
/// [`OpenClosed01`]: struct.OpenClosed01.html
/// [`Uniform`]: uniform/struct.Uniform.html
#[derive(Clone, Copy, Debug)]
pub struct Open01;


pub(crate) trait IntoFloat {
    type F;

    /// Helper method to combine the fraction and a contant exponent into a
    /// float.
    ///
    /// Only the least significant bits of `self` may be set, 23 for `f32` and
    /// 52 for `f64`.
    /// The resulting value will fall in a range that depends on the exponent.
    /// As an example the range with exponent 0 will be
    /// [2<sup>0</sup>..2<sup>1</sup>), which is [1..2).
    fn into_float_with_exponent(self, exponent: i32) -> Self::F;
}

macro_rules! float_impls {
    ($ty:ty, $uty:ty, $fraction_bits:expr, $exponent_bias:expr) => {
        impl IntoFloat for $uty {
            type F = $ty;
            #[inline(always)]
            fn into_float_with_exponent(self, exponent: i32) -> $ty {
                // The exponent is encoded using an offset-binary representation
                let exponent_bits =
                    (($exponent_bias + exponent) as $uty) << $fraction_bits;
                unsafe { mem::transmute(self | exponent_bits) }
            }
        }

        impl Distribution<$ty> for Standard {
            fn sample<R: Rng + ?Sized>(&self, rng: &mut R) -> $ty {
                // Multiply-based method; 24/53 random bits; [0, 1) interval.
                // We use the most significant bits because for simple RNGs
                // those are usually more random.
                let float_size = mem::size_of::<$ty>() * 8;
                let precision = $fraction_bits + 1;
                let scale = 1.0 / ((1 as $uty << precision) as $ty);

                let value: $uty = rng.gen();
                scale * (value >> (float_size - precision)) as $ty
            }
        }

        impl Distribution<$ty> for OpenClosed01 {
            fn sample<R: Rng + ?Sized>(&self, rng: &mut R) -> $ty {
                // Multiply-based method; 24/53 random bits; (0, 1] interval.
                // We use the most significant bits because for simple RNGs
                // those are usually more random.
                let float_size = mem::size_of::<$ty>() * 8;
                let precision = $fraction_bits + 1;
                let scale = 1.0 / ((1 as $uty << precision) as $ty);

                let value: $uty = rng.gen();
                let value = value >> (float_size - precision);
                // Add 1 to shift up; will not overflow because of right-shift:
                scale * (value + 1) as $ty
            }
        }

        impl Distribution<$ty> for Open01 {
            fn sample<R: Rng + ?Sized>(&self, rng: &mut R) -> $ty {
                // Transmute-based method; 23/52 random bits; (0, 1) interval.
                // We use the most significant bits because for simple RNGs
                // those are usually more random.
                const EPSILON: $ty = 1.0 / (1u64 << $fraction_bits) as $ty;
                let float_size = mem::size_of::<$ty>() * 8;

                let value: $uty = rng.gen();
                let fraction = value >> (float_size - $fraction_bits);
                fraction.into_float_with_exponent(0) - (1.0 - EPSILON / 2.0)
            }
        }
    }
}
float_impls! { f32, u32, 23, 127 }
float_impls! { f64, u64, 52, 1023 }


#[cfg(test)]
mod tests {
    use Rng;
    use distributions::{Open01, OpenClosed01};
    use rngs::mock::StepRng;

    const EPSILON32: f32 = ::core::f32::EPSILON;
    const EPSILON64: f64 = ::core::f64::EPSILON;

    #[test]
    fn standard_fp_edge_cases() {
        let mut zeros = StepRng::new(0, 0);
        assert_eq!(zeros.gen::<f32>(), 0.0);
        assert_eq!(zeros.gen::<f64>(), 0.0);

        let mut one32 = StepRng::new(1 << 8, 0);
        assert_eq!(one32.gen::<f32>(), EPSILON32 / 2.0);

        let mut one64 = StepRng::new(1 << 11, 0);
        assert_eq!(one64.gen::<f64>(), EPSILON64 / 2.0);

        let mut max = StepRng::new(!0, 0);
        assert_eq!(max.gen::<f32>(), 1.0 - EPSILON32 / 2.0);
        assert_eq!(max.gen::<f64>(), 1.0 - EPSILON64 / 2.0);
    }

    #[test]
    fn openclosed01_edge_cases() {
        let mut zeros = StepRng::new(0, 0);
        assert_eq!(zeros.sample::<f32, _>(OpenClosed01), 0.0 + EPSILON32 / 2.0);
        assert_eq!(zeros.sample::<f64, _>(OpenClosed01), 0.0 + EPSILON64 / 2.0);

        let mut one32 = StepRng::new(1 << 8, 0);
        assert_eq!(one32.sample::<f32, _>(OpenClosed01), EPSILON32);

        let mut one64 = StepRng::new(1 << 11, 0);
        assert_eq!(one64.sample::<f64, _>(OpenClosed01), EPSILON64);

        let mut max = StepRng::new(!0, 0);
        assert_eq!(max.sample::<f32, _>(OpenClosed01), 1.0);
        assert_eq!(max.sample::<f64, _>(OpenClosed01), 1.0);
    }

    #[test]
    fn open01_edge_cases() {
        let mut zeros = StepRng::new(0, 0);
        assert_eq!(zeros.sample::<f32, _>(Open01), 0.0 + EPSILON32 / 2.0);
        assert_eq!(zeros.sample::<f64, _>(Open01), 0.0 + EPSILON64 / 2.0);

        let mut one32 = StepRng::new(1 << 9, 0);
        assert_eq!(one32.sample::<f32, _>(Open01), EPSILON32 / 2.0 * 3.0);

        let mut one64 = StepRng::new(1 << 12, 0);
        assert_eq!(one64.sample::<f64, _>(Open01), EPSILON64 / 2.0 * 3.0);

        let mut max = StepRng::new(!0, 0);
        assert_eq!(max.sample::<f32, _>(Open01), 1.0 - EPSILON32 / 2.0);
        assert_eq!(max.sample::<f64, _>(Open01), 1.0 - EPSILON64 / 2.0);
    }
}